Tuning dissimilarity explains short distance decline of spontaneous spike correlation in macaque V1

نویسندگان

  • Cheng C.J. Chu
  • Ping F. Chien
  • Chou P. Hung
چکیده

Fast spike correlation is a signature of neural ensemble activity thought to underlie perception, cognition, and action. To relate spike correlation to tuning and other factors, we focused on spontaneous activity because it is the common 'baseline' across studies that test different stimuli, and because variations in correlation strength are much larger across cell pairs than across stimuli. Is the probability of spike correlation between two neurons a graded function of lateral cortical separation, independent of functional tuning (e.g. orientation preferences)? Although previous studies found a steep decline in fast spike correlation with horizontal cortical distance, we hypothesized that, at short distances, this decline is better explained by a decline in receptive field tuning similarity. Here we measured macaque V1 tuning via parametric stimuli and spike-triggered analysis, and we developed a generalized linear model (GLM) to examine how different combinations of factors predict spontaneous spike correlation. Spike correlation was predicted by multiple factors including color, spatiotemporal receptive field, spatial frequency, phase and orientation but not ocular dominance beyond layer 4. Including these factors in the model mostly eliminated the contribution of cortical distance to fast spike correlation (up to our recording limit of 1.4mm), in terms of both 'correlation probability' (the incidence of pairs that have significant fast spike correlation) and 'correlation strength' (each pair's likelihood of fast spike correlation). We suggest that, at short distances and non-input layers, V1 fast spike correlation is determined more by tuning similarity than by cortical distance or ocular dominance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning and spontaneous spike time synchrony share a common structure in macaque inferior temporal cortex.

Investigating the relationship between tuning and spike timing is necessary to understand how neuronal populations in anterior visual cortex process complex stimuli. Are tuning and spontaneous spike time synchrony linked by a common spatial structure (do some cells covary more strongly, even in the absence of visual stimulation?), and what is the object coding capability of this structure? Here...

متن کامل

Orientation selectivity in macaque V1: diversity and laminar dependence.

We studied the steady-state orientation selectivity of single neurons in macaque primary visual cortex (V1). To analyze the data, two measures of orientation tuning selectivity, circular variance and orientation bandwidth, were computed from the tuning curves. Circular variance is a global measure of the shape of the tuning curve, whereas orientation bandwidth is a local measure of the sharpnes...

متن کامل

The linearity and selectivity of neuronal responses in awake visual cortex.

Neurons in primary visual cortex (V1) are frequently classified based on their response linearity: the extent to which their visual responses to drifting gratings resemble a linear replica of the stimulus. This classification is supported by the finding that response linearity is bimodally distributed across neurons in area V1 of anesthetized animals. However, recent studies suggest that such b...

متن کامل

Range and Mechanism of Encoding of Horizontal Disparity

Prince, S.J.D., B. G. Cumming, and A. J. Parker. Range and mechanism of encoding of horizontal disparity in macaque V1. J Neurophysiol 87: 209–221, 2002; 10.1152/jn.00466.2000. The responses of single cortical neurons were measured as a function of the binocular disparity of dynamic random dot stereograms for a large sample of neurons (n 787) from V1 of the awake macaque. From this sample, we s...

متن کامل

Spatial frequency tuning in human retinotopic visual areas.

Human medial occipital cortex comprises multiple visual areas, each with a distinct retinotopic representation of visual environment. We measured spatial frequency (SF) tuning curves with functional magnetic resonance imaging (fMRI) and found consistent differences between these areas. Areas V1, V2, VP, V3, V4v, and V3A were all band-pass tuned, with progressively lower SF optima in V1, V2, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2014